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Abstract: Industrial Control Systems have become 
increasingly connected under Industry 4.0, raising the risk of 
sophisticated cyber threats to critical infrastructure. 
Traditional Intrusion Detection Systems (IDS) that rely on 
manually crafted static rules struggle to adapt quickly to new 
attacks, while machine-learning-based detectors face 
challenges in interpretability and require extensive domain-
specific data. This paper proposes a novel framework that 
leverages Large Language Models (LLMs) to automatically 
generate IDS rules for Suricata, addressing the gap between 
static rule-based security and the need for dynamic, adaptive 
defenses. We integrate advanced LLMs into an automated 
workflow for rule generation, refinement, and validation. 
Through experiments, the framework demonstrates that 
LLM-generated rules can achieve high detection accuracy 
and low false positive rates while optimized prompt strategies 
and moderate packet-level details boost rule accuracy and 
effectiveness. The results highlight the potential of LLMs to 
enhance cybersecurity in industrial environments by rapidly 
producing transparent and effective IDS rules. 

Index Terms— Large Language Models (LLMs), 
Automated Rule Generation, Intrusion Detection Systems 
(IDS), Threat Detection 

Type of contribution: Original Research 

I. INTRODUCTION 

Modern industrial environments increasingly interconnect 
Operational Technology (OT) with Information Technology 
(IT) systems, yielding efficiencies but also exposing critical 
infrastructure to cyber threats. High-profile attacks like Stuxnet 
and Triton have shown that breaches in Industrial Control 
Systems (ICS) can cause physical damage and safety risks. 
Indeed, a recent ICS-CERT report noted “33.8% of ICS 
computers were attacked in the first half of 2021,” [1] 
underscoring the severity of the threat landscape. Intrusion 
Detection Systems (IDS) are a cornerstone of defense in such 
environments, continuously monitoring network traffic for 
malicious patterns. However, conventional IDSs depend on 
static signature rules that are manually written and updated. 
Crafting and maintaining these rules is labor-intensive and 
cannot keep pace with evolving attack techniques. Although 
Machine Learning (ML) and anomaly-detection approaches 
have been explored to automate ICS threat detection, they 
often require large training datasets and struggle with 

transparency and trust – critical factors in industrial settings 
where explainability and determinism are valued. 

Recent advances in LLMs offer a promising alternative for 
automating IDS rule creation. LLMs like GPT and others have 
shown the ability to generate structured text based on prompts, 
suggesting they could be used to synthesize IDS rules from 
descriptions of network activity. The research gap addressed 
by this work lies in whether and how LLMs can be harnessed 
to produce operationally effective IDS rules for industrial 
networks, bridging the agility of AI with the interpretability of 
expert-written signatures. In this paper, we introduce a 
framework that leverages state-of-the-art LLMs to 
automatically generate Suricata IDS rules from network traffic 
captures. Unlike prior approaches that either require extensive 
model training or produce only coarse-grained signatures, our 
method uses off-the-shelf LLMs guided by carefully designed 
prompts to produce refined, context-rich rules. We evaluate the 
framework on multiple realistic ICS attack scenarios to 
validate that the LLM-generated rules can detect attacks with 
high accuracy and low false positives. The novelty of our 
approach is in using LLMs as an automated IDS rule writer 
systematically exploring prompt engineering, model selection, 
and input detail granularity to optimize rule quality. Through 
this, we aim to reduce the manual effort in developing IDS 
content while maintaining the expert knowledge and 
transparency that rule-based systems provide. 

The primary objective of this research is to develop and 
evaluate an automated IDS rule generation framework using 
LLMs for securing industrial networks. To address this 
objective, we pose four key research questions (RQ): 

RQ1: Effectiveness of LLMs in IDS Rule Generation – How 
effectively can LLMs generate accurate and relevant IDS rules 
based on industrial network traffic data? This question 
examines if LLMs can produce rules that not only parse 
correctly but also match malicious patterns in traffic. 

RQ2: Impact of Prompt Engineering – How do different 
prompt strategies influence the quality and consistency of IDS 
rules produced by LLMs? We explore zero-shot prompting vs. 
few-shot and chain-of-thought prompts, hypothesizing that 
more guided prompts may yield more precise but possibly 
fewer generalizable rules. 



  

 

RQ3: Appropriate Evaluation Metrics – What metrics best 
capture the effectiveness and reliability of LLM-generated IDS 
rules? Beyond simple syntax validation, we identify metrics 
such as the percentage of correctly parsed rules, the incidence 
of duplicate or redundant rules, and detection performance 
(precision, recall, F1-score on malicious traffic) to 
quantitatively evaluate the generated rules’ utility. 

RQ4: Packet-Level Feature Inclusion – How does the 
inclusion of packet-level information —incorporating minimal, 
intermediate, and comprehensive feature sets— affect the 
quality and effectiveness of IDS rules generated by LLMs? 
Incorporating detailed packet-level features may enhance the 
precision and contextual relevance of the generated rules. 
However, it remains unclear how different levels of feature 
granularity impact rule accuracy and operational robustness. 

By answering these RQs, we seek to understand the conditions 
under which LLMs can serve as effective tools for automated 
rule generation in industrial cybersecurity and how to best 
configure prompts and inputs to maximize their performance. 

II. BACKGROUND 
This section provides context on industrial threats, network 
analysis, IDS technologies, LLMs in cybersecurity and the 
simulated environments used in our experiments. 

a. Threats in Industrial Environments 
Industrial networks (e.g., factory automation, power grids) 
face unique threats ranging from espionage and sabotage to 
ransomware. Unlike IT systems, ICS often involve legacy 
protocols and safety-critical processes, making the impact of 
cyber attacks potentially severe [2]. Notorious incidents such 
as the Stuxnet malware targeting uranium enrichment, attacks 
on Ukraine’s power grid, and the Triton malware in 
petrochemical plants illustrate how adversaries can disrupt or 
even take control of physical processes. These threats exploit 
both IT-facing components (e.g., SCADA servers, engineering 
workstations) and OT devices (PLCs, sensors) to achieve their 
goals. A major challenge is that many ICS were not originally 
designed with security in mind, and downtime for patching is 
limited. This elevates the need for proactive detection of 
anomalies or known attack signatures before damage is done. 
Attack vectors include network-borne exploits (malicious 
packets or commands), unauthorized device access, and lateral 
movement from corporate networks into OT. 

b. Network Traffic Analysis 
An essential task in securing ICS is analyzing network traffic 
for signs of intrusions. Network traffic analysis involves 
capturing packet data and inspecting it for abnormal patterns 
or known malicious signatures. In industrial settings, this can 
be challenging because protocols like Modbus, DNP3, or 
MMS are less familiar and often proprietary [3]. Tools such as 
Wireshark  provide dissectors for many industrial protocols, 
allowing security analysts to inspect ICS traffic at the packet 
level [4]. By examining traffic captures (PCAPs), analysts can 
identify attack indicators (e.g., a PLC write command outside 
normal parameters, or malformed protocol sequences). This 
analysis is foundational for creating IDS rules. 

c. Detection Technologies and IDS 
Intrusion detection can be broadly categorized into signature-
based and anomaly-based methods. Signature-based IDS (like 
Suricata or Snort) use a database of known attack patterns 
(rules) to flag matching traffic. They are effective for known 
threats and yield low false alarms when rules are well-crafted, 
but they require continuous updates to cover new threats. 
Suricata is an open-source IDS/IPS that uses rules with a rich 
syntax to match packet headers, payload content, and flow 
context [5]. An example rule might look for a specific Modbus 
function code with a dangerous value in the packet payload. 
Human experts typically write such rules after analyzing 
threats. In contrast, anomaly-based IDS utilize machine 
learning to model normal network behavior and alert on 
deviations. These can potentially detect novel attacks but often 
suffer from higher false positive rates and lack clear 
explanations for alerts. Given the industrial need for 
deterministic and explainable defenses, signature-based 
detection remains very relevant. Suricata rules are transparent 
(explicitly stating what pattern triggers an alert) and can be 
reviewed by engineers. 

d. Simulated Environments 
Conducting live cyberattacks on operational industrial systems 
is infeasible due to safety and availability concerns. Therefore, 
simulated ICS environments are leveraged to generate realistic 
attack data in a safe setting. In this work we use the open-
source framework ICSSIM [6] to create a virtual testbed that 
mirrors a plant network. ICSSIM enables researchers to 
emulate ICS components (PLCs, HMIs, etc.) and their network 
communications. A specialized simulator for the IEC-61850 
protocol (substation automation) called IEC61850openserver 
[7] was also utilized for generating MMS traffic in one 
scenario. By using these simulated environments, the 
background traffic and protocols in the PCAPs are realistic for 
a factory setting is ensured (including normal operations like 
sensor readings and control commands).  

e. LLMs in Cybersecurity 

LLMs have exhibited remarkable ability to generate coherent 
text and code from prompts. In cybersecurity, researchers have 
begun exploring LLMs for tasks such as code security auditing, 
malware description, and even writing simple detection rules 
[8]. However, applying LLMs to produce correct and safe 
security configurations poses challenges. One major issue is 
hallucination, an LLM might output plausible-looking but 
incorrect or even syntactically invalid content if the prompt is 
not precise. Ensuring that the model’s output conforms strictly 
to Suricata’s rule syntax is non-trivial. Another challenge is the 
context limitation: LLMs have a token limit, so providing all 
details of network traffic may exceed what the model can 
process. Additionally, LLMs do not inherently “know” what 
makes a good IDS rule –they must infer it from examples or 
instructions- thus, prompt engineering becomes critical. 
Another limitations comes from the LLMs’ non-deterministic 
nature (the randomness factor can lead to variations in each 
run). This required running multiple attempts or using 
temperature controls to get stable results. Security practitioners 
are cautious about automated decisions; hence our design 
keeps a human-in-the-loop for final validation of any LLM-
generated rule.  



  

 

III. RELATED WORK 

Automating IDS rule generation has long been pursued to 
reduce the burden on human analysts. Earlier methods applied 
data mining to network data to derive rules. For example, 
Fallahi et al. [9] propose an approach using decision-rule 
algorithms (Ripper, C5.0) to automatically generate Snort rules 
from flow records. Their system successfully detected certain 
attacks (DoS, brute force) using flow-level features (IP 
addresses, ports), but it neglected deep packet payload 
inspection. This limitation meant complex attacks could evade 
detection. Our work extends this idea by incorporating packet 
payload content into the rule-generation process, thereby 
improving precision against sophisticated threats. Sagala et al. 
[10] uses honeypot logs to produce Snort rules focused on 
attacker and target IPs and ports. While this static log-to-rule 
mapping automates response to observed malicious IPs, it 
lacks context and adaptability, resulting in coarse signatures 
that miss nuanced attacks. In contrast, our LLM-based 
approach generates more context-rich rules (including content 
patterns, protocol fields, etc.) to reduce false negatives and 
false positives. 

More recently, researchers have begun exploring LLMs in 
cybersecurity. Louro et al. [8] studied fine-tuning GPT-style 
models to generate syntactically correct firewall/IDS rules. 
They found that general-purpose LLMs can be repurposed for 
rule generation but often require extensive domain-specific 
fine-tuning for acceptable performance. Our framework avoids 
dataset-specific fine-tuning by leveraging powerful LLMs via 
prompt engineering, aiming for immediate usability with pre-
trained models. This design prioritizes real-time applicability 
(using commercial LLM APIs to draft rules on the fly) and 
demonstrates that even without fine-tuning, careful prompts 
can yield deployable rules. Houssel et al. [11] explored the use 
of LLMs to explain IDS alerts, aiming to enhance analyst 
understanding. They noted challenges such as accuracy and 
computational demands that limit real-time detection 
capabilities. This research aligns with their view of LLMs as 
assistive tools but extends it further by combining rule 
generation and explainability. Specifically, our framework 
leverages LLMs not only to create actionable Suricata 
signatures but also provides clear, concise explanations 
detailing the rationale and purpose behind each generated rule, 
enhancing transparency and trust.. Finally, Tudosi et al. [12] 
developed an automated system to dynamically generate 
firewall rules from IDS logs and alerts. This reduced manual 
work, but the generated firewall rules were largely broad 
IP/port blocks, and the system depended on known attack 
signatures to trigger rule creation. We improve upon this by 
having LLMs generate detailed and proactive rules triggered 
by recognizing attack patterns in raw traffic, not just reacting 
to alerts. In summary, prior studies underscore the potential of 
automation and LLMs in security, but also reveal limitations; 
lack of deep packet context, need for fine-tuning, or reactive 
scope. Our framework builds on these insights, using LLMs to 
produce more precise, context-aware IDS rules and 
systematically evaluating their efficacy in an ICS context. 

IV. PROPOSED FRAMEWORK 

Our framework for automated IDS rule generation consists of 
a pipeline that processes raw network traffic data, interacts 
with an LLM to produce candidate rules, and validates those 
rules before deploying them. The workflow comprises several 
stages: 

Traffic Input & Preprocessing: The process begins by 
analyzing packet captures from the industrial environment to 
identify traffic segments associated with suspected attacks. 
Initially, the Zeek tool extracts flow summaries from the main 
PCAP file. Subsequently, flows related specifically to 
anomalous activities are isolated based on attacker IP 
addresses, effectively filtering them from the broader set of 
normal flows. These isolated anomalous flows are then 
structured into concise textual representations, clearly 
describing the malicious activity in a log-like format. This IP-
based labeling is justified by the controlled, single-attacker 
setup of our simulated testbed, where the source IP 
unequivocally marks malicious flows. We acknowledge this 
approach may not generalize to stealthy or multi-host threats 
(APTs, compromised legitimate endpoints) and thus flag it as 
a limitation and a direction for future work. 

LLM Prompting Strategy: The framework employs a 
structured, iterative prompting strategy involving multiple 
calls to the LLM: 

1. First Prompt (Initial Rule Generation): This initial 
prompt receives anomalous flow details along with 
essential parameters (e.g., the last rule SID, LLM 
model, temperature, prompt strategy —zero-shot, 
few-shot, or chain-of-thought). It generates 
preliminary Suricata rules accompanied by natural-
language explanations that clearly articulate the 
rationale and intended detection logic. 

2. Second Prompt (Evaluation): The second call re-
submits the initial anomalous flows and the generated 
preliminary rules. Its role is to classify each rule as 
acceptable, needing further refinement, or 
discardable. Minor corrections for consistency are 
applied at this stage, and rules requiring detailed 
packet-level context for refinement are flagged for the 
third prompt. 

3. Third Prompt (Refinement): Rules flagged for 
refinement undergo detailed packet extraction using 
Tshark filters based on the rule's attributes, capturing 
the first 500 bytes of relevant payloads. The rule, its 
explanation, and the extracted packet details are fed 
back to the LLM. This enriched context enhances rule 
precision, aligning detection patterns more closely 
with actual attack characteristics. 
Note: Since payload data is only used at this stage, 
rules not selected for refinement by the LLM lack 
payload context. 



  

 

4. Fourth Prompt (Parser-based Correction): Finally, 
the refined rules are validated using Suricata’s parser 
in test mode. If syntactic or structural errors arise, the 
affected rules, along with specific parser error 
messages, are resubmitted for further correction. This 
iterative correction cycle continues until all rules pass 
validation, capped at three iterations. 

Rule Parsing and Validation: The text returned by the LLM is 
parsed to extract actual rule lines. Here the framework ensures 
that only syntactically valid rules are kept. In the proposed 
implementation, a regex-based parser was applied to extract 
the Suricata rule and it’s explanation from the LLM’s output. 
The framework automatically removes obvious duplicates in 
the model’s output and ensures each rule is unique. Each 
candidate rule is then tested with Suricata’s parser to check for 
syntax correctness. This step catches any minor format issues. 
If the model included non-critical errors, a optionally last call 
to the LLM could be performed to correct itself as stated in 
“Fourth Prompt (Parser-based Correction)”. 

Automated Rule Evaluation: Validated rules are rigorously 
evaluated against network traffic to determine their 
effectiveness in detecting malicious activities while 
minimizing false positives. The evaluation methodology 
integrates several stages, including Ground Truth creation, rule 
application, and detailed metric analysis at both the packet and 
flow levels. 

Ground Truth Creation: A reliable Ground Truth dataset is 
established by manually inspecting a full network capture 
(main PCAP) using Wireshark. At least one representative 
packet from each suspicious flow is manually labeled and 
exported, forming a reduced PCAP file that captures confirmed 
malicious traffic. To guarantee that entire malicious flows are 
represented, the Community ID is leveraged to correlate the 
exported packets with all associated packets in the original 
PCAP. Consequently, comprehensive malicious flows are 
identified and extracted, forming a complete and accurate 
Ground Truth dataset. 

Application of Rules and Alert Generation: Once the Ground 
Truth is created, the validated Suricata rules generated by the 
LLM are loaded into a local Suricata instance, which analyzes 
the complete original PCAP. 

Suricata produces alerts based on matches between traffic 
patterns and rules, logging these alerts into structured JSON 
files for subsequent analysis. This alert analysis classifies 
outcomes into four categories: True Positives (Malicious flows 
correctly identified), False Positives (Benign flows incorrectly 
flagged), False Negatives (Malicious flows not detected) and 
True Negatives (Benign flows correctly ignored). 

Evaluation Metrics: Rule effectiveness is quantitatively 
assessed using standard performance metrics, including 
precision, recall, accuracy, and F1-score, computed at both 
packet and flow levels: 

 Packet-level metrics: Measure the correctness of each 
packet classification individually, providing granular 
insights. However, relying solely on packet-level 
evaluation can lead to biases, particularly with attacks 
that involve extensive flows (e.g., DoS or brute-force 
attacks). Missing detection of a single large flow can 

disproportionately reduce precision and recall, 
skewing overall results. 

 Flow-level metrics: Evaluate whether entire 
communication flows —comprising multiple 
packets— are correctly classified. Flow-level 
evaluation is particularly relevant for industrial 
environments, where malicious activities often 
manifest as continuous streams of packets within a 
single flow.  

This combined packet and flow-level assessment ensures that 
rule evaluations accurately represent real-world attack 
scenarios and prevents large, undetected flows from 
significantly biasing the metrics. 

V. EXPERIMENTS AND RESULTS 

A series of experiments were conducted to evaluate the 
framework across three representative attack scenarios in a 
controlled ICS environment. The experiments were three: 

1. First Experiment: Single-Prompt vs. Three-Prompt 
Strategy: Compares the effectiveness of a single-prompt 
versus an iterative three-prompt chain for IDS rule 
generation. The single-prompt method generates rules 
exclusively based on flow-level information, whereas the 
three-prompt strategy introduces iterative refinement with 
packet-level context, potentially improving accuracy and 
detection performance. 

2. Second Experiment: Model, Prompt Strategy, and 
Temperature Impact. Evaluates how variations in LLM 
models, prompt strategies (zero-shot, few-shot, chain-of-
thought), and temperature settings influence rule 
generation quality. This experiment identifies optimal 
combinations of parameters by assessing precision, recall, 
and the number of necessary rule corrections. 

3. Third Experiment: Packet-Level Feature Inclusion. 
Analyzes whether varying levels of packet-level detail 
(minimal, intermediate, comprehensive) provided to the 
LLM enhance IDS rule accuracy. The experiment aims to 
determine if richer contextual inputs significantly improve 
rule effectiveness or introduce unnecessary complexity. 

Each scenario represents a distinct attack type(s) recreated in 
the simulated ICS testbed. Within each scenario, every 
possible experimental configuration —defined by a distinct set 
of parameters such as prompt strategy, model choice, 
temperature setting, and packet-detail granularity— is 
evaluated, with 11 iterations performed for each configuration. 
For each attack scenario, the corresponding PCAP is collected, 
all configurations are tested, and the generated rules are then 
assessed for their ability to detect the threat in that same 
scenario. Presenting results by scenario highlights how rule 
performance varies both with attack type and with 
configuration choice. 

Scenario 1: SQL Injection + Modbus PLC Write. 

This scenario mimics an attacker who first exploits a 
vulnerable web interface (SQL Injection) to gain a foothold 
and then issues unauthorized Modbus/TCP commands to a 
PLC. The combined attack was executed in the ICSSIM 
environment. 



  

 

For the GPT models, under the one‐prompt strategy —where 
only flow-level details are provided— GPT-4o-mini and o3-
mini achieve 100% parsing accuracy (without the use of the 
Suricata’s parser feedback and last LLM query for correction), 
while GPT-4o reaches approximately 75%. With the three‐
prompt chain, which incorporates packet-level details for 
increased rule precision, GPT-4o-mini’s parsing accuracy 
decreases to around 75%, and both GPT-4o and o3-mini drop 
to 0%. Only the GPT-4o-mini generates duplicate rules. When 
the whole pipeline is executed (the three prompts and the 
parser’s feedback) the zero-shot strategy achieved the highest 
recall (~64.7%) and strong overall F1 scores, indicating 
broader detection capabilities but at the cost of slightly reduced 
syntax accuracy (~97.7% rules parsed correctly). Conversely, 
the few-shot strategy produced the most syntactically accurate 
rules (~99.7% parse success) but significantly limited 
detection (recall ~32.4%), creating overly specific rules based 
on provided examples. The chain-of-thought strategy balanced 
these extremes, offering moderate recall (~51.6%) and high 
syntax correctness (~97.0% parsed), providing stable and 
iterative refinement. Incorporating intermediate packet-level 
features boosts accuracy and recall while avoiding the 
overfitting seen with all features; minimal features result in 
overly broad rules that miss attacks. 

When using a single prompt, gemini-2.0-flash achieves about 
76% parsing accuracy, gemini-2.0-flash-lite around 65%, and 
gemini-1.5-pro 100%. Shifting to the three‐prompt approach, 
gemini-2.0-flash drops to roughly 35%, while gemini-2.0-
flash-lite and gemini-1.5-pro each settle near 50%. Regarding 
duplicates, the 9% of the generated rules by Gemini 1.5-pro 
model were duplicates, reaching percentages of 28% in some 
iterations. When executing the whole pipeline, the chain-of-
thought strategy was optimal for Gemini, achieving the highest 
recall (~68.7%), outperforming zero-shot (~49.2%) and few-
shot (~27.7%) significantly. However, Gemini consistently 
encountered more parsing errors (~87.6% parsed), indicating 
lower reliability in syntax compliance. Gemini also generated 
more duplicates and higher variance in rules created, 
highlighting greater unpredictability compared to GPT and 
Claude. 

In the case of Claude’s models, Claude-3.5-Haiku achieves 
about 50% parsing accuracy, while Claude-3.7-Sonnet attains 
around 65%. Under three prompts, Claude-3.5-Haiku drops to 
0%, and Claude-3.7-Sonnet ranges between 55% and 60%. 
Neither Claude model produces any duplicate. When executing 
the whole pipeline, the few-shot strategy greatly improved 
recall (~61.2%) compared to zero-shot (~26.9%), though at the 
expense of parsing accuracy (~94.6%). Claude performed best 
syntactically in zero-shot (~98.9% parsed) but detected few 
attacks. Chain-of-thought prompting provided a good middle 
ground (recall ~53.3%, parsing ~97.9%), suggesting Claude 
benefits significantly from additional reasoning or examples to 
enhance detection without major parsing issues. Performance 
improve with richer packet-level details; while intermediate 
features offer a solid balance, including all available details 
further enhances recall and F1-score compared to minimal 
configurations. 

 
Figure 1: Recall versus Temperature by Family Models for the 

Scenario 1 

Table 1: Average Flow Metrics by Prompt Strategy (aggregated 
across all models) 

Prompt Strategy Precision (avg.) Recall (avg.) F1-score 
Zero-shot ~0.89 ~0.41 ~0.50 
Few-shot ~0.94 ~0.34 ~0.44 
CoT ~0.99 ~0.44 ~0.55 

 

 
Figure 2: F1-Score versus Temperature for each Model Family and 

Prompt Strategy (NMAP Scan) 

Table 2: Average percentage of rules parsed correctly and Average 
number of duplicate rules 

Model 
Family 

Single-
Prompt  
Parsed % 

Three-
Prompt 
Parsed % 

Single-
Prompt  
Duplicates 
(avg) 

Three-
Prompt  
Duplicates 
(avg) 

GPT 90.9% 
(±15.3) 

65.8% 
(±37.5) 

3.4 (max 
102) 

0.9 (max 
47) 

Claude  58.3% 
(±5.9) 

23.4% 
(±30.2) 

0.0 0.0 

Gemini 82.2% 
(±12.2) 

41.9% 
(±34.7) 

0.0 0.2 (max 4) 

Scenario 2: Nmap Scan of ICS Network. 

The third scenario is an active reconnaissance attack: an Nmap 
port scan sweeps the industrial network to map out open 
services on PLCs and HMIs. This is a common precursor to 
targeted attacks. Detecting scans is a classic IDS task; 
however, this scenario was used to evaluate how LLM-
generated rules handle high-frequency events and how they 
utilize different levels of detail. The network capture contained 
numerous TCP SYN packets and ARP requests from the 
scanner. 

For the GPT models, the non‑reasoning variant, gpt‑4o‑mini, 
proved to be quite conservative with an average recall around 
28% and an F1‑score near 0.42, even though in lower 
temperature zero‑shot settings it reached roughly 50% recall 
(F1 ~0.65). In contrast, the reasoning‑enhanced o3‑mini model 
outperformed its counterpart, achieving about 65% recall and 



  

 

an F1‑score of approximately 0.71 across different temperature 
settings, while maintaining nearly perfect precision. Zero‑shot 
prompting produced concise and consistent rule sets with 
minimal duplicates, whereas few‑shot prompting resulted in 
larger, more variable outputs. The chain‑of‑thought strategy 
generally led to the highest detection performance —with 
average recall around 44% and an F1‑score near 0.55— by 
allowing the model to reason through complex scanning 
patterns. Additionally, experiments on packet‑level feature 
inclusion indicated that providing minimal details (focusing on 
core features like source/destination IPs, ports, and SYN 
packet indicators) yielded the best results for GPT models; 
adding more packet-level information slightly reduced recall 
(from ~61.4% to ~54.7%) without significant gains in 
precision. 

 
 Figure 3: Accuracy, F1-Score and Recall Boxplot for GPT Models 

for the Scenario 2 

Within the Gemini family, performance was more variable. 
The Gemini‑1.5‑Pro model achieved roughly 49% recall and 
an F1‑score around 0.59 with excellent precision (~97.5%), 
outperforming the newer Gemini‑2.0‑Flash variant, which 
reached about 40.7% recall and an F1‑score of 0.49, with 
precision averaging ~85%. The lightweight 
Gemini‑2.0‑Flash‑Lite model struggled considerably, 
managing only around 15% recall and an F1‑score near 0.21, 
with lower precision (~72%). In some cases, few‑shot 
prompting marginally improved recall (up to ~39.6%) for 
certain Gemini variants, while chain‑of‑thought prompting 
boosted detection in low‑temperature runs from near‑null 
values to 0.3–0.4; however, these strategies also led to 
increased duplicate rules and greater variability in outputs.  

 
Figure 4: Accuracy, F1-Score and Recall Boxplot for Gemini 

Models for the Scenario 2 

For the Claude models, the advanced Claude 3.7 Sonnet clearly 
outperformed the lighter Claude 3.5 Haiku variant, achieving 
about 47.5% recall and an F1‑score around 0.60 compared to 
~26% recall and an F1 of 0.40 for the latter. Both Claude 
models maintained near‑perfect precision (virtually 100%) 
across runs. Under chain‑of‑thought prompting, recall for 

Claude 3.7 Sonnet improved dramatically in some cases (up to 
~85%), though overall, few‑shot prompting tended to yield the 
lowest recall (~34%) despite a slight precision advantage. 
Consistently across the experiments, Claude models benefited 
most from minimal packet‑level input; adding excessive packet 
details introduced noise that significantly reduced both 
precision and recall. 

 
Figure 5: Accuracy, F1-Score and Recall Boxplot for Claude 

Models for the Scenario 2 

VI. DISCUSSION 

Our findings demonstrate the viability of LLMs for automating 
IDS rule creation in industrial contexts, while also revealing 
important considerations. To revisit the research questions: 
RQ1 (Effectiveness) – The experiments confirmed that state-
of-the-art LLMs can generate syntactically correct and 
operationally effective Suricata rules for diverse ICS threats. 
In each scenario, at least one LLM produced a high-quality rule 
or rule set that successfully detected the attack without expert 
intervention. Notably, certain models stood out: Claude 3.7 
(Anthropic) and GPT o3-mini (OpenAI) consistently yielded 
accurate rules when given clear prompts, detecting even 
sophisticated multi-step attacks. We observed that Claude 
models tended to be more deterministic and produced fewer 
errors, which suggests their training favored reliability – an 
attractive trait for security applications. Gemini (Google) 
models generated valuable rules as well, though with higher 
variability; they sometimes offered very concise solutions and 
other times overly verbose ones, indicating that iterative 
prompting or temperature tuning was needed. In summary, 
RQ1 is answered affirmatively: LLMs (especially Claude and 
GPT) can indeed serve as an effective “virtual analyst” to write 
IDS rules, given proper configuration. 

For RQ2 (Prompt Engineering), our results highlight that 
prompt strategy significantly influences outcomes. A zero-shot 
approach was simpler and often yielded a correct basic rule, 
showing higher initial parse success rates across all model 
families. However, these rules were sometimes over-generic 
(catching the obvious pattern but potentially missing subtle 
variations, or creating redundant rules). Using a multi-step 
chain-of-thought prompt forced the model to be more thorough 
and reduced redundant outputs (we saw dramatically fewer 
duplicate rules with chain-of-thought). The trade-off was that 
the added complexity could confuse the model’s rule 
formatting, lowering the immediate parsing success. Few-shot 
prompting (providing examples) proved beneficial for syntax. 
Models almost never made format mistakes after seeing an 
example, and correctness was high. However, those examples 
can bias the model towards copying the specifics of the 
example, sometimes making rules too narrowly tailored 



  

 

(“overfitting” to the example’s pattern). The key insight is that 
there is no one-size-fits-all prompt: one must balance 
simplicity for correctness and complexity for completeness. In 
practice, a hybrid approach may work best: e.g., first use a 
zero-shot prompt to get a base rule, then use a refined prompt 
to improve it. Security analysts can then choose which result 
to deploy. This finding underscores prompt engineering as a 
crucial skill for applying LLMs in cybersecurity tasks. 

Addressing RQ3 (Evaluation Metrics), we found a 
combination of syntactic and semantic metrics necessary to 
fully assess LLM-generated rules. Syntactic parsing accuracy 
(percentage of rules that load without error) was a fundamental 
metric; in our tests, parsing accuracy above ~90% was needed 
for a model to be practically useful. All top-tier models met 
this threshold under optimal prompts, with Claude reaching 
~100% in many cases. We also measured the number of 
duplicate rules and any Suricata parser errors as indicators of 
output quality. High duplicate counts indicate the model might 
be “spamming” patterns, which could burden an IDS with 
redundant checks. Our multi-scenario tests showed that after 
prompt tuning, duplicates were minimal for most models (often 
zero or one duplicate at most). Importantly, we introduced 
flow-level detection metrics (precision, recall, F1-score on 
malicious vs. benign flows) to directly evaluate if the rules 
perform their security function. This bridged a gap: a rule that 
parses correctly isn’t useful unless it actually catches attacks 
and ignores normal traffic. By combining these metrics, we 
could identify the best configurations. Overall, the chosen 
metrics effectively captured both the technical correctness and 
the operational efficacy of generated rules, they can serve as a 
template for future evaluations of AI-generated security rules. 

For RQ4 (Packet-Level Feature Inclusion), the experiments 
revealed a nuanced but clear pattern: intermediate detail is 
optimal. When LLMs were given only minimal info, the 
resulting rules lacked precision or missed specifics (low 
recall/F1). Conversely, when flooded with all packet bytes or 
exhaustive details, models occasionally fixated on irrelevant 
aspects or became inconsistent in formatting, hurting parsing 
accuracy and sometimes recall. The intermediate approach –
providing the most relevant fields and a bit of context– 
produced the best outcomes. This likely works because it gives 
the LLM enough context to understand the attack (nuanced 
behaviors) but not so much that it loses focus or runs out of its 
attention span. Practically, this means that when using LLMs 
for rule generation, one should carefully select what input data 
to include. 

Beyond the RQs, we observed some model-specific trends 
worth noting. GPT models emerged as strong overall 
performers, they often produced effective rules across all 
scenarios, showing versatility. They did, however, sometimes 
require the chain-of-thought prompt to reach that effectiveness, 
indicating they respond well to reasoning tasks. Claude models 
were remarkably good at maintaining Suricata syntax and 
providing what felt like professionally written rules. Their 
deterministic nature (less randomness) is a double-edged 
sword: great for consistency, but if they misunderstood the 
prompt, they would consistently do so. We mitigated that by 
prompt clarity. Gemini models improved significantly with 
iterative prompting; their first attempt might be messy, but they 
quickly adapted, which suggests that an interactive loop 

proposed can harness them effectively. In terms of speed and 
cost, smaller models (like GPT-4o-mini or Claude 3.5 Haiku) 
were faster and cheaper to run, yet still yielded decent rules. 
This raises an operational point: one could use a cheaper model 
for quick initial rule drafts and then validate or refine with a 
more powerful model if needed. 

From a security operations perspective, these results indicate 
that an LLM-driven rule assistant could soon become a reality. 
An analyst could feed network logs of a new attack into such a 
system and get a candidate rule, saving precious time during 
incident response. Our framework’s output is human-readable 
rules, meaning the final decision remains with analysts. They 
can inspect the AI-generated rule and decide to deploy it, 
combining AI speed with human judgment. We also note that 
instructing LLMs to consider negative cases (what not to alert 
on) by embedding domain knowledge, is useful. 

Finally, we must consider limitations. One limitation is 
token/context size (complex scenarios might exceed the 
LLM’s input limit). We managed this by trimming inputs, but 
as attacks get larger, this could be problematic (discussed in 
section VII). Another limitation is that our evaluation was on a 
controlled set of attacks; real-world traffic might introduce 
noise that could confuse the models or cause false positives. 
We did not deeply test the robustness of rules against slight 
attack variations (beyond the ones the LLM itself considered). 

However, given the generally specific nature of the rules, they 
might need updates if attackers significantly change tactics. 
Encouragingly, the LLM can simply be re-prompted with new 
data in such cases. The framework is not yet fully autonomous, 
we foresee it as a recommendation system for human analysts 
rather than a black-box rule generator deployed without 
oversight. 

VII. FUTURE LINES 

While the framework is effective, there are several avenues to 
explore to further mature this approach for real-world 
deployment: 

Handling Large or Continuous Data: One immediate area for 
improvement is dealing with LLM token limitations. Future 
research can investigate intelligent data segmentation  
(breaking traffic into chunks that the LLM can process 
sequentially, perhaps with a rolling context). Techniques like 
summarizing or clustering similar traffic can reduce input size 
without losing important information. As newer LLMs with 
larger context windowsbecome available, the framework 
should be updated to leverage those, feeding them more 
complete views of traffic. Maintaining a modular design will 
allow incorporating such advanced models seamlessly. The 
ultimate goal is to handle live data streams, potentially by 
sliding window analysis where the LLM processes recent 
traffic slices for rule generation suggestions. 

Real-time and Autonomous Operation: Currently, a human 
validates and deploys the LLM-generated rules. Moving 
towards real-time applicability, we envision integrating this 
framework with a digital twin or testbed environment for 
automatic validation. For example, before pushing a rule to a 
production IDS, it could be tested in a virtual replica of the 
network (using a simulation) to ensure it catches the intended 



  

 

malicious behavior and does not over-trigger. This automated 
testing loop could enable a more autonomous system that 
generates and verifies rules on the fly. Additionally, research 
into reducing the need for manual oversight through more 
robust self-checks is warranted. 

Improving Consistency (Reducing Non-determinism): The 
stochastic nature of LLM outputs means each run might yield 
a different rule. While we found ways to minimize this (low 
temperatures, etc.), completely eliminating variability would 
boost trust. Future work could explore fine-tuning an LLM on 
cybersecurity data –e.g., training it with lots of example attacks 
and correct rules– to see if that yields more consistent and 
domain-optimized outputs. Fine-tuning might also reduce 
prompt complexity needed, as the model internalizes how to 
map traffic to rules. Techniques like programmatic chain-of-
thought, where the model’s reasoning is constrained, could 
yield repeatable results. We believe achieving higher 
predictability is crucial for critical infrastructure security 
adoption, and it’s an active area for model improvement. 

Robust Output Parsing and Format Handling: We relied on 
regex parsing to extract rules from the LLM output, which 
worked but required maintenance (e.g., updating the regex 
when a model formatted output unexpectedly). Future 
iterations could employ more sophisticated techniques like 
using an LLM or parser to interpret the output. Alternatively, 
incorporating a suricata rule grammar into a parser or using 
ML-based parsing could make the extraction step more robust 
to variations. By improving this aspect, the system becomes 
less brittle and can handle any formatting quirks from future 
models. 

Expanding to Other Security Domains: While our focus was 
Suricata IDS rules, the concept can extend to other rule-based 
systems – for example, firewall rules, SIEM alert rules, or even 
detection code (like Snort dynamic preprocessor or YARA 
rules for malware). Future work could test LLMs on generating 
those artifacts, potentially using a similar approach. Each 
domain has its syntax and semantics, so some adaptation in 
prompt and validation would be needed. 

On-premise and Privacy-Preserving Models: One practical 
direction is deploying this capability in environments where 
sending data to cloud APIs is not acceptable (common in 
critical infrastructure due to privacy). Future lines include 
evaluating the performance of open-source LLMs that can run 
on local hardware. If a smaller fine-tuned model can run on an 
edge server and produce rules nearly as well as those generated 
by the models tested, that would be a significant win for 
adoption. Techniques like model distillation or quantization 
might be applied to compress the knowledge of a large model 
into a lightweight one that an organization can use internally. 

The next steps aim to make the LLM-driven IDS rule 
generation more scalable, autonomous, and integrated. By 
overcoming current limitations –token limits, need for human 
review, output variability– we move closer to an era of self-
updating IDS, where new threats are rapidly countered by AI-
crafted defenses. Our work provides a foundation, and these 
future directions outline a path to transition this prototype into 
a robust, field-ready system. We anticipate that as LLM 
technology and cybersecurity datasets evolve, the synergy 
between them will lead to increasingly intelligent and reliable 

security infrastructure, reducing the window of exposure to 
new threats and easing the burden on human analysts. 

ACKNOWLEDGMENTS 

This work has been supported by CRITIC Project Grant 
PLEC2024-011222 funded by AEI/10.13039/501100011033, 
FEDER and EU. 

BIBLIOGRAPHY 

[1]  Kaspersky, «Threat landscape for industrial automation 
systems. Statistics for H1 2021,» 9 September 2021. 
[Online]. Available: https://ics-
cert.kaspersky.com/publications/reports/2021/09/09/threat-
landscape-for-industrial-automation-systems-statistics-for-
h1-2021/. 

[2]  R. Masum, «Cyber Security in Smart Manufacturing 
(Threats, Landscapes Challenges),» arXiv, 20 April 2023.  

[3]  J. F. &. R. K. W. Kurose, «Computer Networking: A Top-
Down Approach (8th ed.),» Pearson, 2021.  

[4]  Wireshark, «Wireshark Documentation,» [Online]. 
Available: https://www.wireshark.org/docs/. 

[5]  A. Y. H. L. Y. S. a. L. S. Yan Hu, «A survey of intrusion 
detection on industrial control systems,» SAGE, p. 14, 2018.  

[6]  A. Dehlaghi, «ICSSIM | GitHub,» [Online]. Available: 
https://github.com/AlirezaDehlaghi/ICSSIM. 

[7]  robidev, «iec61850_open_server | GitHub,» [Online]. 
Available: 
https://github.com/robidev/iec61850_open_server. 

[8]  R. A. J. C. C. J. B. F. S. a. P. R. M. I. Bernardo Louro, 
«Analysis of the Capability and Training of Chat Bots in the 
Generation of Rules for Firewall or Intrusion Detection 
Systems,» International Conference on Availability, 
Reliability and Security, p. 7, 2024.  

[9]  A. S. a. M. Naser Fallahi, «Automated Flow-based Rule 
Generation for Network Intrusion Detection Systems,» 
Iranian Conference on Electrical Engineering (ICEE), 
2016.  

[10]  A. Sagala, «Automatic SNORT IDS Rule Generation Based 
on Honeypot Log,» International Conference on 
Information Technology and Electrical Engineering 
(ICITEE), 2015.  

[11]  P. S. S. L. a. M. P. Paul R. B. Houssel, «Towards 
Explainable Network Intrusion Detection using Large 
Language Models,» arXiv, 2024.  

[12]  A. G. D. G. B. A. D. P. a. R.-C. T. Andrei-Daniel TUDOSI, 
«Design and Implementation of an Automated Dynamic 
Rule System for Distributed Firewalls,» Advances in 
Electrical and Computer Engineering, p. 10, 2023.  

 
 


	Abstract: Industrial Control Systems have become increasingly connected under Industry 4.0, raising the risk of sophisticated cyber threats to critical infrastructure. Traditional Intrusion Detection Systems (IDS) that rely on manually crafted static ...
	I. INTRODUCTION
	RQ1: Effectiveness of LLMs in IDS Rule Generation – How effectively can LLMs generate accurate and relevant IDS rules based on industrial network traffic data? This question examines if LLMs can produce rules that not only parse correctly but also mat...
	RQ2: Impact of Prompt Engineering – How do different prompt strategies influence the quality and consistency of IDS rules produced by LLMs? We explore zero-shot prompting vs. few-shot and chain-of-thought prompts, hypothesizing that more guided prompt...
	RQ3: Appropriate Evaluation Metrics – What metrics best capture the effectiveness and reliability of LLM-generated IDS rules? Beyond simple syntax validation, we identify metrics such as the percentage of correctly parsed rules, the incidence of dupli...
	RQ4: Packet-Level Feature Inclusion – How does the inclusion of packet-level information —incorporating minimal, intermediate, and comprehensive feature sets— affect the quality and effectiveness of IDS rules generated by LLMs? Incorporating detailed ...

	II. BACKGROUND
	a. Threats in Industrial Environments
	b. Network Traffic Analysis
	c. Detection Technologies and IDS
	d. Simulated Environments
	e. LLMs in Cybersecurity

	III. RELATED WORK
	IV. PROPOSED FRAMEWORK
	1. First Prompt (Initial Rule Generation): This initial prompt receives anomalous flow details along with essential parameters (e.g., the last rule SID, LLM model, temperature, prompt strategy —zero-shot, few-shot, or chain-of-thought). It generates p...
	2. Second Prompt (Evaluation): The second call re-submits the initial anomalous flows and the generated preliminary rules. Its role is to classify each rule as acceptable, needing further refinement, or discardable. Minor corrections for consistency a...
	3. Third Prompt (Refinement): Rules flagged for refinement undergo detailed packet extraction using Tshark filters based on the rule's attributes, capturing the first 500 bytes of relevant payloads. The rule, its explanation, and the extracted packet ...
	4. Fourth Prompt (Parser-based Correction): Finally, the refined rules are validated using Suricata’s parser in test mode. If syntactic or structural errors arise, the affected rules, along with specific parser error messages, are resubmitted for furt...

	V. EXPERIMENTS AND RESULTS
	Scenario 1: SQL Injection + Modbus PLC Write.
	Scenario 2: Nmap Scan of ICS Network.

	VI. DISCUSSION
	VII. FUTURE LINES
	ACKNOWLEDGMENTS
	BIBLIOGRAPHY

