

Leveraging LLMs for Automated IDS Rule
Generation: A Novel Methodology for Securing

Industrial Environments
Manez Moreno, Xabier Sáez-de-Cámara, Aitor Urbieta Mikel Iturbe

Ikerlan Technology Research Centre Department of Electronics and Computing
Basque Research and Technology Alliance (BRTA) Mondragon Unibertsitatea

Arrasate-Mondragón, Spain Arrasate-Mondragón, Spain
{mmoreno, xsaezdecamara, aurbieta}@ikerlan.es miturbe@mondragon.edu

Abstract: Industrial Control Systems have become
increasingly connected under Industry 4.0, raising the risk of
sophisticated cyber threats to critical infrastructure.
Traditional Intrusion Detection Systems (IDS) that rely on
manually crafted static rules struggle to adapt quickly to new
attacks, while machine-learning-based detectors face
challenges in interpretability and require extensive domain-
specific data. This paper proposes a novel framework that
leverages Large Language Models (LLMs) to automatically
generate IDS rules for Suricata, addressing the gap between
static rule-based security and the need for dynamic, adaptive
defenses. We integrate advanced LLMs into an automated
workflow for rule generation, refinement, and validation.
Through experiments, the framework demonstrates that
LLM-generated rules can achieve high detection accuracy
and low false positive rates while optimized prompt strategies
and moderate packet-level details boost rule accuracy and
effectiveness. The results highlight the potential of LLMs to
enhance cybersecurity in industrial environments by rapidly
producing transparent and effective IDS rules.

Index Terms— Large Language Models (LLMs),
Automated Rule Generation, Intrusion Detection Systems
(IDS), Threat Detection

Type of contribution: Original Research

I. INTRODUCTION

Modern industrial environments increasingly interconnect
Operational Technology (OT) with Information Technology
(IT) systems, yielding efficiencies but also exposing critical
infrastructure to cyber threats. High-profile attacks like Stuxnet
and Triton have shown that breaches in Industrial Control
Systems (ICS) can cause physical damage and safety risks.
Indeed, a recent ICS-CERT report noted “33.8% of ICS
computers were attacked in the first half of 2021,” [1]
underscoring the severity of the threat landscape. Intrusion
Detection Systems (IDS) are a cornerstone of defense in such
environments, continuously monitoring network traffic for
malicious patterns. However, conventional IDSs depend on
static signature rules that are manually written and updated.
Crafting and maintaining these rules is labor-intensive and
cannot keep pace with evolving attack techniques. Although
Machine Learning (ML) and anomaly-detection approaches
have been explored to automate ICS threat detection, they
often require large training datasets and struggle with

transparency and trust – critical factors in industrial settings
where explainability and determinism are valued.

Recent advances in LLMs offer a promising alternative for
automating IDS rule creation. LLMs like GPT and others have
shown the ability to generate structured text based on prompts,
suggesting they could be used to synthesize IDS rules from
descriptions of network activity. The research gap addressed
by this work lies in whether and how LLMs can be harnessed
to produce operationally effective IDS rules for industrial
networks, bridging the agility of AI with the interpretability of
expert-written signatures. In this paper, we introduce a
framework that leverages state-of-the-art LLMs to
automatically generate Suricata IDS rules from network traffic
captures. Unlike prior approaches that either require extensive
model training or produce only coarse-grained signatures, our
method uses off-the-shelf LLMs guided by carefully designed
prompts to produce refined, context-rich rules. We evaluate the
framework on multiple realistic ICS attack scenarios to
validate that the LLM-generated rules can detect attacks with
high accuracy and low false positives. The novelty of our
approach is in using LLMs as an automated IDS rule writer
systematically exploring prompt engineering, model selection,
and input detail granularity to optimize rule quality. Through
this, we aim to reduce the manual effort in developing IDS
content while maintaining the expert knowledge and
transparency that rule-based systems provide.

The primary objective of this research is to develop and
evaluate an automated IDS rule generation framework using
LLMs for securing industrial networks. To address this
objective, we pose four key research questions (RQ):

RQ1: Effectiveness of LLMs in IDS Rule Generation – How
effectively can LLMs generate accurate and relevant IDS rules
based on industrial network traffic data? This question
examines if LLMs can produce rules that not only parse
correctly but also match malicious patterns in traffic.

RQ2: Impact of Prompt Engineering – How do different
prompt strategies influence the quality and consistency of IDS
rules produced by LLMs? We explore zero-shot prompting vs.
few-shot and chain-of-thought prompts, hypothesizing that
more guided prompts may yield more precise but possibly
fewer generalizable rules.

RQ3: Appropriate Evaluation Metrics – What metrics best
capture the effectiveness and reliability of LLM-generated IDS
rules? Beyond simple syntax validation, we identify metrics
such as the percentage of correctly parsed rules, the incidence
of duplicate or redundant rules, and detection performance
(precision, recall, F1-score on malicious traffic) to
quantitatively evaluate the generated rules’ utility.

RQ4: Packet-Level Feature Inclusion – How does the
inclusion of packet-level information —incorporating minimal,
intermediate, and comprehensive feature sets— affect the
quality and effectiveness of IDS rules generated by LLMs?
Incorporating detailed packet-level features may enhance the
precision and contextual relevance of the generated rules.
However, it remains unclear how different levels of feature
granularity impact rule accuracy and operational robustness.

By answering these RQs, we seek to understand the conditions
under which LLMs can serve as effective tools for automated
rule generation in industrial cybersecurity and how to best
configure prompts and inputs to maximize their performance.

II. BACKGROUND
This section provides context on industrial threats, network
analysis, IDS technologies, LLMs in cybersecurity and the
simulated environments used in our experiments.

a. Threats in Industrial Environments
Industrial networks (e.g., factory automation, power grids)
face unique threats ranging from espionage and sabotage to
ransomware. Unlike IT systems, ICS often involve legacy
protocols and safety-critical processes, making the impact of
cyber attacks potentially severe [2]. Notorious incidents such
as the Stuxnet malware targeting uranium enrichment, attacks
on Ukraine’s power grid, and the Triton malware in
petrochemical plants illustrate how adversaries can disrupt or
even take control of physical processes. These threats exploit
both IT-facing components (e.g., SCADA servers, engineering
workstations) and OT devices (PLCs, sensors) to achieve their
goals. A major challenge is that many ICS were not originally
designed with security in mind, and downtime for patching is
limited. This elevates the need for proactive detection of
anomalies or known attack signatures before damage is done.
Attack vectors include network-borne exploits (malicious
packets or commands), unauthorized device access, and lateral
movement from corporate networks into OT.

b. Network Traffic Analysis
An essential task in securing ICS is analyzing network traffic
for signs of intrusions. Network traffic analysis involves
capturing packet data and inspecting it for abnormal patterns
or known malicious signatures. In industrial settings, this can
be challenging because protocols like Modbus, DNP3, or
MMS are less familiar and often proprietary [3]. Tools such as
Wireshark provide dissectors for many industrial protocols,
allowing security analysts to inspect ICS traffic at the packet
level [4]. By examining traffic captures (PCAPs), analysts can
identify attack indicators (e.g., a PLC write command outside
normal parameters, or malformed protocol sequences). This
analysis is foundational for creating IDS rules.

c. Detection Technologies and IDS
Intrusion detection can be broadly categorized into signature-
based and anomaly-based methods. Signature-based IDS (like
Suricata or Snort) use a database of known attack patterns
(rules) to flag matching traffic. They are effective for known
threats and yield low false alarms when rules are well-crafted,
but they require continuous updates to cover new threats.
Suricata is an open-source IDS/IPS that uses rules with a rich
syntax to match packet headers, payload content, and flow
context [5]. An example rule might look for a specific Modbus
function code with a dangerous value in the packet payload.
Human experts typically write such rules after analyzing
threats. In contrast, anomaly-based IDS utilize machine
learning to model normal network behavior and alert on
deviations. These can potentially detect novel attacks but often
suffer from higher false positive rates and lack clear
explanations for alerts. Given the industrial need for
deterministic and explainable defenses, signature-based
detection remains very relevant. Suricata rules are transparent
(explicitly stating what pattern triggers an alert) and can be
reviewed by engineers.

d. Simulated Environments
Conducting live cyberattacks on operational industrial systems
is infeasible due to safety and availability concerns. Therefore,
simulated ICS environments are leveraged to generate realistic
attack data in a safe setting. In this work we use the open-
source framework ICSSIM [6] to create a virtual testbed that
mirrors a plant network. ICSSIM enables researchers to
emulate ICS components (PLCs, HMIs, etc.) and their network
communications. A specialized simulator for the IEC-61850
protocol (substation automation) called IEC61850openserver
[7] was also utilized for generating MMS traffic in one
scenario. By using these simulated environments, the
background traffic and protocols in the PCAPs are realistic for
a factory setting is ensured (including normal operations like
sensor readings and control commands).

e. LLMs in Cybersecurity

LLMs have exhibited remarkable ability to generate coherent
text and code from prompts. In cybersecurity, researchers have
begun exploring LLMs for tasks such as code security auditing,
malware description, and even writing simple detection rules
[8]. However, applying LLMs to produce correct and safe
security configurations poses challenges. One major issue is
hallucination, an LLM might output plausible-looking but
incorrect or even syntactically invalid content if the prompt is
not precise. Ensuring that the model’s output conforms strictly
to Suricata’s rule syntax is non-trivial. Another challenge is the
context limitation: LLMs have a token limit, so providing all
details of network traffic may exceed what the model can
process. Additionally, LLMs do not inherently “know” what
makes a good IDS rule –they must infer it from examples or
instructions- thus, prompt engineering becomes critical.
Another limitations comes from the LLMs’ non-deterministic
nature (the randomness factor can lead to variations in each
run). This required running multiple attempts or using
temperature controls to get stable results. Security practitioners
are cautious about automated decisions; hence our design
keeps a human-in-the-loop for final validation of any LLM-
generated rule.

III. RELATED WORK

Automating IDS rule generation has long been pursued to
reduce the burden on human analysts. Earlier methods applied
data mining to network data to derive rules. For example,
Fallahi et al. [9] propose an approach using decision-rule
algorithms (Ripper, C5.0) to automatically generate Snort rules
from flow records. Their system successfully detected certain
attacks (DoS, brute force) using flow-level features (IP
addresses, ports), but it neglected deep packet payload
inspection. This limitation meant complex attacks could evade
detection. Our work extends this idea by incorporating packet
payload content into the rule-generation process, thereby
improving precision against sophisticated threats. Sagala et al.
[10] uses honeypot logs to produce Snort rules focused on
attacker and target IPs and ports. While this static log-to-rule
mapping automates response to observed malicious IPs, it
lacks context and adaptability, resulting in coarse signatures
that miss nuanced attacks. In contrast, our LLM-based
approach generates more context-rich rules (including content
patterns, protocol fields, etc.) to reduce false negatives and
false positives.

More recently, researchers have begun exploring LLMs in
cybersecurity. Louro et al. [8] studied fine-tuning GPT-style
models to generate syntactically correct firewall/IDS rules.
They found that general-purpose LLMs can be repurposed for
rule generation but often require extensive domain-specific
fine-tuning for acceptable performance. Our framework avoids
dataset-specific fine-tuning by leveraging powerful LLMs via
prompt engineering, aiming for immediate usability with pre-
trained models. This design prioritizes real-time applicability
(using commercial LLM APIs to draft rules on the fly) and
demonstrates that even without fine-tuning, careful prompts
can yield deployable rules. Houssel et al. [11] explored the use
of LLMs to explain IDS alerts, aiming to enhance analyst
understanding. They noted challenges such as accuracy and
computational demands that limit real-time detection
capabilities. This research aligns with their view of LLMs as
assistive tools but extends it further by combining rule
generation and explainability. Specifically, our framework
leverages LLMs not only to create actionable Suricata
signatures but also provides clear, concise explanations
detailing the rationale and purpose behind each generated rule,
enhancing transparency and trust.. Finally, Tudosi et al. [12]
developed an automated system to dynamically generate
firewall rules from IDS logs and alerts. This reduced manual
work, but the generated firewall rules were largely broad
IP/port blocks, and the system depended on known attack
signatures to trigger rule creation. We improve upon this by
having LLMs generate detailed and proactive rules triggered
by recognizing attack patterns in raw traffic, not just reacting
to alerts. In summary, prior studies underscore the potential of
automation and LLMs in security, but also reveal limitations;
lack of deep packet context, need for fine-tuning, or reactive
scope. Our framework builds on these insights, using LLMs to
produce more precise, context-aware IDS rules and
systematically evaluating their efficacy in an ICS context.

IV. PROPOSED FRAMEWORK

Our framework for automated IDS rule generation consists of
a pipeline that processes raw network traffic data, interacts
with an LLM to produce candidate rules, and validates those
rules before deploying them. The workflow comprises several
stages:

Traffic Input & Preprocessing: The process begins by
analyzing packet captures from the industrial environment to
identify traffic segments associated with suspected attacks.
Initially, the Zeek tool extracts flow summaries from the main
PCAP file. Subsequently, flows related specifically to
anomalous activities are isolated based on attacker IP
addresses, effectively filtering them from the broader set of
normal flows. These isolated anomalous flows are then
structured into concise textual representations, clearly
describing the malicious activity in a log-like format. This IP-
based labeling is justified by the controlled, single-attacker
setup of our simulated testbed, where the source IP
unequivocally marks malicious flows. We acknowledge this
approach may not generalize to stealthy or multi-host threats
(APTs, compromised legitimate endpoints) and thus flag it as
a limitation and a direction for future work.

LLM Prompting Strategy: The framework employs a
structured, iterative prompting strategy involving multiple
calls to the LLM:

1. First Prompt (Initial Rule Generation): This initial
prompt receives anomalous flow details along with
essential parameters (e.g., the last rule SID, LLM
model, temperature, prompt strategy —zero-shot,
few-shot, or chain-of-thought). It generates
preliminary Suricata rules accompanied by natural-
language explanations that clearly articulate the
rationale and intended detection logic.

2. Second Prompt (Evaluation): The second call re-
submits the initial anomalous flows and the generated
preliminary rules. Its role is to classify each rule as
acceptable, needing further refinement, or
discardable. Minor corrections for consistency are
applied at this stage, and rules requiring detailed
packet-level context for refinement are flagged for the
third prompt.

3. Third Prompt (Refinement): Rules flagged for
refinement undergo detailed packet extraction using
Tshark filters based on the rule's attributes, capturing
the first 500 bytes of relevant payloads. The rule, its
explanation, and the extracted packet details are fed
back to the LLM. This enriched context enhances rule
precision, aligning detection patterns more closely
with actual attack characteristics.
Note: Since payload data is only used at this stage,
rules not selected for refinement by the LLM lack
payload context.

4. Fourth Prompt (Parser-based Correction): Finally,
the refined rules are validated using Suricata’s parser
in test mode. If syntactic or structural errors arise, the
affected rules, along with specific parser error
messages, are resubmitted for further correction. This
iterative correction cycle continues until all rules pass
validation, capped at three iterations.

Rule Parsing and Validation: The text returned by the LLM is
parsed to extract actual rule lines. Here the framework ensures
that only syntactically valid rules are kept. In the proposed
implementation, a regex-based parser was applied to extract
the Suricata rule and it’s explanation from the LLM’s output.
The framework automatically removes obvious duplicates in
the model’s output and ensures each rule is unique. Each
candidate rule is then tested with Suricata’s parser to check for
syntax correctness. This step catches any minor format issues.
If the model included non-critical errors, a optionally last call
to the LLM could be performed to correct itself as stated in
“Fourth Prompt (Parser-based Correction)”.

Automated Rule Evaluation: Validated rules are rigorously
evaluated against network traffic to determine their
effectiveness in detecting malicious activities while
minimizing false positives. The evaluation methodology
integrates several stages, including Ground Truth creation, rule
application, and detailed metric analysis at both the packet and
flow levels.

Ground Truth Creation: A reliable Ground Truth dataset is
established by manually inspecting a full network capture
(main PCAP) using Wireshark. At least one representative
packet from each suspicious flow is manually labeled and
exported, forming a reduced PCAP file that captures confirmed
malicious traffic. To guarantee that entire malicious flows are
represented, the Community ID is leveraged to correlate the
exported packets with all associated packets in the original
PCAP. Consequently, comprehensive malicious flows are
identified and extracted, forming a complete and accurate
Ground Truth dataset.

Application of Rules and Alert Generation: Once the Ground
Truth is created, the validated Suricata rules generated by the
LLM are loaded into a local Suricata instance, which analyzes
the complete original PCAP.

Suricata produces alerts based on matches between traffic
patterns and rules, logging these alerts into structured JSON
files for subsequent analysis. This alert analysis classifies
outcomes into four categories: True Positives (Malicious flows
correctly identified), False Positives (Benign flows incorrectly
flagged), False Negatives (Malicious flows not detected) and
True Negatives (Benign flows correctly ignored).

Evaluation Metrics: Rule effectiveness is quantitatively
assessed using standard performance metrics, including
precision, recall, accuracy, and F1-score, computed at both
packet and flow levels:

 Packet-level metrics: Measure the correctness of each
packet classification individually, providing granular
insights. However, relying solely on packet-level
evaluation can lead to biases, particularly with attacks
that involve extensive flows (e.g., DoS or brute-force
attacks). Missing detection of a single large flow can

disproportionately reduce precision and recall,
skewing overall results.

 Flow-level metrics: Evaluate whether entire
communication flows —comprising multiple
packets— are correctly classified. Flow-level
evaluation is particularly relevant for industrial
environments, where malicious activities often
manifest as continuous streams of packets within a
single flow.

This combined packet and flow-level assessment ensures that
rule evaluations accurately represent real-world attack
scenarios and prevents large, undetected flows from
significantly biasing the metrics.

V. EXPERIMENTS AND RESULTS

A series of experiments were conducted to evaluate the
framework across three representative attack scenarios in a
controlled ICS environment. The experiments were three:

1. First Experiment: Single-Prompt vs. Three-Prompt
Strategy: Compares the effectiveness of a single-prompt
versus an iterative three-prompt chain for IDS rule
generation. The single-prompt method generates rules
exclusively based on flow-level information, whereas the
three-prompt strategy introduces iterative refinement with
packet-level context, potentially improving accuracy and
detection performance.

2. Second Experiment: Model, Prompt Strategy, and
Temperature Impact. Evaluates how variations in LLM
models, prompt strategies (zero-shot, few-shot, chain-of-
thought), and temperature settings influence rule
generation quality. This experiment identifies optimal
combinations of parameters by assessing precision, recall,
and the number of necessary rule corrections.

3. Third Experiment: Packet-Level Feature Inclusion.
Analyzes whether varying levels of packet-level detail
(minimal, intermediate, comprehensive) provided to the
LLM enhance IDS rule accuracy. The experiment aims to
determine if richer contextual inputs significantly improve
rule effectiveness or introduce unnecessary complexity.

Each scenario represents a distinct attack type(s) recreated in
the simulated ICS testbed. Within each scenario, every
possible experimental configuration —defined by a distinct set
of parameters such as prompt strategy, model choice,
temperature setting, and packet-detail granularity— is
evaluated, with 11 iterations performed for each configuration.
For each attack scenario, the corresponding PCAP is collected,
all configurations are tested, and the generated rules are then
assessed for their ability to detect the threat in that same
scenario. Presenting results by scenario highlights how rule
performance varies both with attack type and with
configuration choice.

Scenario 1: SQL Injection + Modbus PLC Write.

This scenario mimics an attacker who first exploits a
vulnerable web interface (SQL Injection) to gain a foothold
and then issues unauthorized Modbus/TCP commands to a
PLC. The combined attack was executed in the ICSSIM
environment.

For the GPT models, under the one‐prompt strategy —where
only flow-level details are provided— GPT-4o-mini and o3-
mini achieve 100% parsing accuracy (without the use of the
Suricata’s parser feedback and last LLM query for correction),
while GPT-4o reaches approximately 75%. With the three‐
prompt chain, which incorporates packet-level details for
increased rule precision, GPT-4o-mini’s parsing accuracy
decreases to around 75%, and both GPT-4o and o3-mini drop
to 0%. Only the GPT-4o-mini generates duplicate rules. When
the whole pipeline is executed (the three prompts and the
parser’s feedback) the zero-shot strategy achieved the highest
recall (~64.7%) and strong overall F1 scores, indicating
broader detection capabilities but at the cost of slightly reduced
syntax accuracy (~97.7% rules parsed correctly). Conversely,
the few-shot strategy produced the most syntactically accurate
rules (~99.7% parse success) but significantly limited
detection (recall ~32.4%), creating overly specific rules based
on provided examples. The chain-of-thought strategy balanced
these extremes, offering moderate recall (~51.6%) and high
syntax correctness (~97.0% parsed), providing stable and
iterative refinement. Incorporating intermediate packet-level
features boosts accuracy and recall while avoiding the
overfitting seen with all features; minimal features result in
overly broad rules that miss attacks.

When using a single prompt, gemini-2.0-flash achieves about
76% parsing accuracy, gemini-2.0-flash-lite around 65%, and
gemini-1.5-pro 100%. Shifting to the three‐prompt approach,
gemini-2.0-flash drops to roughly 35%, while gemini-2.0-
flash-lite and gemini-1.5-pro each settle near 50%. Regarding
duplicates, the 9% of the generated rules by Gemini 1.5-pro
model were duplicates, reaching percentages of 28% in some
iterations. When executing the whole pipeline, the chain-of-
thought strategy was optimal for Gemini, achieving the highest
recall (~68.7%), outperforming zero-shot (~49.2%) and few-
shot (~27.7%) significantly. However, Gemini consistently
encountered more parsing errors (~87.6% parsed), indicating
lower reliability in syntax compliance. Gemini also generated
more duplicates and higher variance in rules created,
highlighting greater unpredictability compared to GPT and
Claude.

In the case of Claude’s models, Claude-3.5-Haiku achieves
about 50% parsing accuracy, while Claude-3.7-Sonnet attains
around 65%. Under three prompts, Claude-3.5-Haiku drops to
0%, and Claude-3.7-Sonnet ranges between 55% and 60%.
Neither Claude model produces any duplicate. When executing
the whole pipeline, the few-shot strategy greatly improved
recall (~61.2%) compared to zero-shot (~26.9%), though at the
expense of parsing accuracy (~94.6%). Claude performed best
syntactically in zero-shot (~98.9% parsed) but detected few
attacks. Chain-of-thought prompting provided a good middle
ground (recall ~53.3%, parsing ~97.9%), suggesting Claude
benefits significantly from additional reasoning or examples to
enhance detection without major parsing issues. Performance
improve with richer packet-level details; while intermediate
features offer a solid balance, including all available details
further enhances recall and F1-score compared to minimal
configurations.

Figure 1: Recall versus Temperature by Family Models for the

Scenario 1

Table 1: Average Flow Metrics by Prompt Strategy (aggregated
across all models)

Prompt Strategy Precision (avg.) Recall (avg.) F1-score
Zero-shot ~0.89 ~0.41 ~0.50
Few-shot ~0.94 ~0.34 ~0.44
CoT ~0.99 ~0.44 ~0.55

Figure 2: F1-Score versus Temperature for each Model Family and

Prompt Strategy (NMAP Scan)

Table 2: Average percentage of rules parsed correctly and Average
number of duplicate rules

Model
Family

Single-
Prompt
Parsed %

Three-
Prompt
Parsed %

Single-
Prompt
Duplicates
(avg)

Three-
Prompt
Duplicates
(avg)

GPT 90.9%
(±15.3)

65.8%
(±37.5)

3.4 (max
102)

0.9 (max
47)

Claude 58.3%
(±5.9)

23.4%
(±30.2)

0.0 0.0

Gemini 82.2%
(±12.2)

41.9%
(±34.7)

0.0 0.2 (max 4)

Scenario 2: Nmap Scan of ICS Network.

The third scenario is an active reconnaissance attack: an Nmap
port scan sweeps the industrial network to map out open
services on PLCs and HMIs. This is a common precursor to
targeted attacks. Detecting scans is a classic IDS task;
however, this scenario was used to evaluate how LLM-
generated rules handle high-frequency events and how they
utilize different levels of detail. The network capture contained
numerous TCP SYN packets and ARP requests from the
scanner.

For the GPT models, the non‑reasoning variant, gpt‑4o‑mini,
proved to be quite conservative with an average recall around
28% and an F1‑score near 0.42, even though in lower
temperature zero‑shot settings it reached roughly 50% recall
(F1 ~0.65). In contrast, the reasoning‑enhanced o3‑mini model
outperformed its counterpart, achieving about 65% recall and

an F1‑score of approximately 0.71 across different temperature
settings, while maintaining nearly perfect precision. Zero‑shot
prompting produced concise and consistent rule sets with
minimal duplicates, whereas few‑shot prompting resulted in
larger, more variable outputs. The chain‑of‑thought strategy
generally led to the highest detection performance —with
average recall around 44% and an F1‑score near 0.55— by
allowing the model to reason through complex scanning
patterns. Additionally, experiments on packet‑level feature
inclusion indicated that providing minimal details (focusing on
core features like source/destination IPs, ports, and SYN
packet indicators) yielded the best results for GPT models;
adding more packet-level information slightly reduced recall
(from ~61.4% to ~54.7%) without significant gains in
precision.

 Figure 3: Accuracy, F1-Score and Recall Boxplot for GPT Models

for the Scenario 2

Within the Gemini family, performance was more variable.
The Gemini‑1.5‑Pro model achieved roughly 49% recall and
an F1‑score around 0.59 with excellent precision (~97.5%),
outperforming the newer Gemini‑2.0‑Flash variant, which
reached about 40.7% recall and an F1‑score of 0.49, with
precision averaging ~85%. The lightweight
Gemini‑2.0‑Flash‑Lite model struggled considerably,
managing only around 15% recall and an F1‑score near 0.21,
with lower precision (~72%). In some cases, few‑shot
prompting marginally improved recall (up to ~39.6%) for
certain Gemini variants, while chain‑of‑thought prompting
boosted detection in low‑temperature runs from near‑null
values to 0.3–0.4; however, these strategies also led to
increased duplicate rules and greater variability in outputs.

Figure 4: Accuracy, F1-Score and Recall Boxplot for Gemini

Models for the Scenario 2

For the Claude models, the advanced Claude 3.7 Sonnet clearly
outperformed the lighter Claude 3.5 Haiku variant, achieving
about 47.5% recall and an F1‑score around 0.60 compared to
~26% recall and an F1 of 0.40 for the latter. Both Claude
models maintained near‑perfect precision (virtually 100%)
across runs. Under chain‑of‑thought prompting, recall for

Claude 3.7 Sonnet improved dramatically in some cases (up to
~85%), though overall, few‑shot prompting tended to yield the
lowest recall (~34%) despite a slight precision advantage.
Consistently across the experiments, Claude models benefited
most from minimal packet‑level input; adding excessive packet
details introduced noise that significantly reduced both
precision and recall.

Figure 5: Accuracy, F1-Score and Recall Boxplot for Claude

Models for the Scenario 2

VI. DISCUSSION

Our findings demonstrate the viability of LLMs for automating
IDS rule creation in industrial contexts, while also revealing
important considerations. To revisit the research questions:
RQ1 (Effectiveness) – The experiments confirmed that state-
of-the-art LLMs can generate syntactically correct and
operationally effective Suricata rules for diverse ICS threats.
In each scenario, at least one LLM produced a high-quality rule
or rule set that successfully detected the attack without expert
intervention. Notably, certain models stood out: Claude 3.7
(Anthropic) and GPT o3-mini (OpenAI) consistently yielded
accurate rules when given clear prompts, detecting even
sophisticated multi-step attacks. We observed that Claude
models tended to be more deterministic and produced fewer
errors, which suggests their training favored reliability – an
attractive trait for security applications. Gemini (Google)
models generated valuable rules as well, though with higher
variability; they sometimes offered very concise solutions and
other times overly verbose ones, indicating that iterative
prompting or temperature tuning was needed. In summary,
RQ1 is answered affirmatively: LLMs (especially Claude and
GPT) can indeed serve as an effective “virtual analyst” to write
IDS rules, given proper configuration.

For RQ2 (Prompt Engineering), our results highlight that
prompt strategy significantly influences outcomes. A zero-shot
approach was simpler and often yielded a correct basic rule,
showing higher initial parse success rates across all model
families. However, these rules were sometimes over-generic
(catching the obvious pattern but potentially missing subtle
variations, or creating redundant rules). Using a multi-step
chain-of-thought prompt forced the model to be more thorough
and reduced redundant outputs (we saw dramatically fewer
duplicate rules with chain-of-thought). The trade-off was that
the added complexity could confuse the model’s rule
formatting, lowering the immediate parsing success. Few-shot
prompting (providing examples) proved beneficial for syntax.
Models almost never made format mistakes after seeing an
example, and correctness was high. However, those examples
can bias the model towards copying the specifics of the
example, sometimes making rules too narrowly tailored

(“overfitting” to the example’s pattern). The key insight is that
there is no one-size-fits-all prompt: one must balance
simplicity for correctness and complexity for completeness. In
practice, a hybrid approach may work best: e.g., first use a
zero-shot prompt to get a base rule, then use a refined prompt
to improve it. Security analysts can then choose which result
to deploy. This finding underscores prompt engineering as a
crucial skill for applying LLMs in cybersecurity tasks.

Addressing RQ3 (Evaluation Metrics), we found a
combination of syntactic and semantic metrics necessary to
fully assess LLM-generated rules. Syntactic parsing accuracy
(percentage of rules that load without error) was a fundamental
metric; in our tests, parsing accuracy above ~90% was needed
for a model to be practically useful. All top-tier models met
this threshold under optimal prompts, with Claude reaching
~100% in many cases. We also measured the number of
duplicate rules and any Suricata parser errors as indicators of
output quality. High duplicate counts indicate the model might
be “spamming” patterns, which could burden an IDS with
redundant checks. Our multi-scenario tests showed that after
prompt tuning, duplicates were minimal for most models (often
zero or one duplicate at most). Importantly, we introduced
flow-level detection metrics (precision, recall, F1-score on
malicious vs. benign flows) to directly evaluate if the rules
perform their security function. This bridged a gap: a rule that
parses correctly isn’t useful unless it actually catches attacks
and ignores normal traffic. By combining these metrics, we
could identify the best configurations. Overall, the chosen
metrics effectively captured both the technical correctness and
the operational efficacy of generated rules, they can serve as a
template for future evaluations of AI-generated security rules.

For RQ4 (Packet-Level Feature Inclusion), the experiments
revealed a nuanced but clear pattern: intermediate detail is
optimal. When LLMs were given only minimal info, the
resulting rules lacked precision or missed specifics (low
recall/F1). Conversely, when flooded with all packet bytes or
exhaustive details, models occasionally fixated on irrelevant
aspects or became inconsistent in formatting, hurting parsing
accuracy and sometimes recall. The intermediate approach –
providing the most relevant fields and a bit of context–
produced the best outcomes. This likely works because it gives
the LLM enough context to understand the attack (nuanced
behaviors) but not so much that it loses focus or runs out of its
attention span. Practically, this means that when using LLMs
for rule generation, one should carefully select what input data
to include.

Beyond the RQs, we observed some model-specific trends
worth noting. GPT models emerged as strong overall
performers, they often produced effective rules across all
scenarios, showing versatility. They did, however, sometimes
require the chain-of-thought prompt to reach that effectiveness,
indicating they respond well to reasoning tasks. Claude models
were remarkably good at maintaining Suricata syntax and
providing what felt like professionally written rules. Their
deterministic nature (less randomness) is a double-edged
sword: great for consistency, but if they misunderstood the
prompt, they would consistently do so. We mitigated that by
prompt clarity. Gemini models improved significantly with
iterative prompting; their first attempt might be messy, but they
quickly adapted, which suggests that an interactive loop

proposed can harness them effectively. In terms of speed and
cost, smaller models (like GPT-4o-mini or Claude 3.5 Haiku)
were faster and cheaper to run, yet still yielded decent rules.
This raises an operational point: one could use a cheaper model
for quick initial rule drafts and then validate or refine with a
more powerful model if needed.

From a security operations perspective, these results indicate
that an LLM-driven rule assistant could soon become a reality.
An analyst could feed network logs of a new attack into such a
system and get a candidate rule, saving precious time during
incident response. Our framework’s output is human-readable
rules, meaning the final decision remains with analysts. They
can inspect the AI-generated rule and decide to deploy it,
combining AI speed with human judgment. We also note that
instructing LLMs to consider negative cases (what not to alert
on) by embedding domain knowledge, is useful.

Finally, we must consider limitations. One limitation is
token/context size (complex scenarios might exceed the
LLM’s input limit). We managed this by trimming inputs, but
as attacks get larger, this could be problematic (discussed in
section VII). Another limitation is that our evaluation was on a
controlled set of attacks; real-world traffic might introduce
noise that could confuse the models or cause false positives.
We did not deeply test the robustness of rules against slight
attack variations (beyond the ones the LLM itself considered).

However, given the generally specific nature of the rules, they
might need updates if attackers significantly change tactics.
Encouragingly, the LLM can simply be re-prompted with new
data in such cases. The framework is not yet fully autonomous,
we foresee it as a recommendation system for human analysts
rather than a black-box rule generator deployed without
oversight.

VII. FUTURE LINES

While the framework is effective, there are several avenues to
explore to further mature this approach for real-world
deployment:

Handling Large or Continuous Data: One immediate area for
improvement is dealing with LLM token limitations. Future
research can investigate intelligent data segmentation
(breaking traffic into chunks that the LLM can process
sequentially, perhaps with a rolling context). Techniques like
summarizing or clustering similar traffic can reduce input size
without losing important information. As newer LLMs with
larger context windowsbecome available, the framework
should be updated to leverage those, feeding them more
complete views of traffic. Maintaining a modular design will
allow incorporating such advanced models seamlessly. The
ultimate goal is to handle live data streams, potentially by
sliding window analysis where the LLM processes recent
traffic slices for rule generation suggestions.

Real-time and Autonomous Operation: Currently, a human
validates and deploys the LLM-generated rules. Moving
towards real-time applicability, we envision integrating this
framework with a digital twin or testbed environment for
automatic validation. For example, before pushing a rule to a
production IDS, it could be tested in a virtual replica of the
network (using a simulation) to ensure it catches the intended

malicious behavior and does not over-trigger. This automated
testing loop could enable a more autonomous system that
generates and verifies rules on the fly. Additionally, research
into reducing the need for manual oversight through more
robust self-checks is warranted.

Improving Consistency (Reducing Non-determinism): The
stochastic nature of LLM outputs means each run might yield
a different rule. While we found ways to minimize this (low
temperatures, etc.), completely eliminating variability would
boost trust. Future work could explore fine-tuning an LLM on
cybersecurity data –e.g., training it with lots of example attacks
and correct rules– to see if that yields more consistent and
domain-optimized outputs. Fine-tuning might also reduce
prompt complexity needed, as the model internalizes how to
map traffic to rules. Techniques like programmatic chain-of-
thought, where the model’s reasoning is constrained, could
yield repeatable results. We believe achieving higher
predictability is crucial for critical infrastructure security
adoption, and it’s an active area for model improvement.

Robust Output Parsing and Format Handling: We relied on
regex parsing to extract rules from the LLM output, which
worked but required maintenance (e.g., updating the regex
when a model formatted output unexpectedly). Future
iterations could employ more sophisticated techniques like
using an LLM or parser to interpret the output. Alternatively,
incorporating a suricata rule grammar into a parser or using
ML-based parsing could make the extraction step more robust
to variations. By improving this aspect, the system becomes
less brittle and can handle any formatting quirks from future
models.

Expanding to Other Security Domains: While our focus was
Suricata IDS rules, the concept can extend to other rule-based
systems – for example, firewall rules, SIEM alert rules, or even
detection code (like Snort dynamic preprocessor or YARA
rules for malware). Future work could test LLMs on generating
those artifacts, potentially using a similar approach. Each
domain has its syntax and semantics, so some adaptation in
prompt and validation would be needed.

On-premise and Privacy-Preserving Models: One practical
direction is deploying this capability in environments where
sending data to cloud APIs is not acceptable (common in
critical infrastructure due to privacy). Future lines include
evaluating the performance of open-source LLMs that can run
on local hardware. If a smaller fine-tuned model can run on an
edge server and produce rules nearly as well as those generated
by the models tested, that would be a significant win for
adoption. Techniques like model distillation or quantization
might be applied to compress the knowledge of a large model
into a lightweight one that an organization can use internally.

The next steps aim to make the LLM-driven IDS rule
generation more scalable, autonomous, and integrated. By
overcoming current limitations –token limits, need for human
review, output variability– we move closer to an era of self-
updating IDS, where new threats are rapidly countered by AI-
crafted defenses. Our work provides a foundation, and these
future directions outline a path to transition this prototype into
a robust, field-ready system. We anticipate that as LLM
technology and cybersecurity datasets evolve, the synergy
between them will lead to increasingly intelligent and reliable

security infrastructure, reducing the window of exposure to
new threats and easing the burden on human analysts.

ACKNOWLEDGMENTS

This work has been supported by CRITIC Project Grant
PLEC2024-011222 funded by AEI/10.13039/501100011033,
FEDER and EU.

BIBLIOGRAPHY

[1] Kaspersky, «Threat landscape for industrial automation
systems. Statistics for H1 2021,» 9 September 2021.
[Online]. Available: https://ics-
cert.kaspersky.com/publications/reports/2021/09/09/threat-
landscape-for-industrial-automation-systems-statistics-for-
h1-2021/.

[2] R. Masum, «Cyber Security in Smart Manufacturing
(Threats, Landscapes Challenges),» arXiv, 20 April 2023.

[3] J. F. &. R. K. W. Kurose, «Computer Networking: A Top-
Down Approach (8th ed.),» Pearson, 2021.

[4] Wireshark, «Wireshark Documentation,» [Online].
Available: https://www.wireshark.org/docs/.

[5] A. Y. H. L. Y. S. a. L. S. Yan Hu, «A survey of intrusion
detection on industrial control systems,» SAGE, p. 14, 2018.

[6] A. Dehlaghi, «ICSSIM | GitHub,» [Online]. Available:
https://github.com/AlirezaDehlaghi/ICSSIM.

[7] robidev, «iec61850_open_server | GitHub,» [Online].
Available:
https://github.com/robidev/iec61850_open_server.

[8] R. A. J. C. C. J. B. F. S. a. P. R. M. I. Bernardo Louro,
«Analysis of the Capability and Training of Chat Bots in the
Generation of Rules for Firewall or Intrusion Detection
Systems,» International Conference on Availability,
Reliability and Security, p. 7, 2024.

[9] A. S. a. M. Naser Fallahi, «Automated Flow-based Rule
Generation for Network Intrusion Detection Systems,»
Iranian Conference on Electrical Engineering (ICEE),
2016.

[10] A. Sagala, «Automatic SNORT IDS Rule Generation Based
on Honeypot Log,» International Conference on
Information Technology and Electrical Engineering
(ICITEE), 2015.

[11] P. S. S. L. a. M. P. Paul R. B. Houssel, «Towards
Explainable Network Intrusion Detection using Large
Language Models,» arXiv, 2024.

[12] A. G. D. G. B. A. D. P. a. R.-C. T. Andrei-Daniel TUDOSI,
«Design and Implementation of an Automated Dynamic
Rule System for Distributed Firewalls,» Advances in
Electrical and Computer Engineering, p. 10, 2023.

	Abstract: Industrial Control Systems have become increasingly connected under Industry 4.0, raising the risk of sophisticated cyber threats to critical infrastructure. Traditional Intrusion Detection Systems (IDS) that rely on manually crafted static ...
	I. INTRODUCTION
	RQ1: Effectiveness of LLMs in IDS Rule Generation – How effectively can LLMs generate accurate and relevant IDS rules based on industrial network traffic data? This question examines if LLMs can produce rules that not only parse correctly but also mat...
	RQ2: Impact of Prompt Engineering – How do different prompt strategies influence the quality and consistency of IDS rules produced by LLMs? We explore zero-shot prompting vs. few-shot and chain-of-thought prompts, hypothesizing that more guided prompt...
	RQ3: Appropriate Evaluation Metrics – What metrics best capture the effectiveness and reliability of LLM-generated IDS rules? Beyond simple syntax validation, we identify metrics such as the percentage of correctly parsed rules, the incidence of dupli...
	RQ4: Packet-Level Feature Inclusion – How does the inclusion of packet-level information —incorporating minimal, intermediate, and comprehensive feature sets— affect the quality and effectiveness of IDS rules generated by LLMs? Incorporating detailed ...

	II. BACKGROUND
	a. Threats in Industrial Environments
	b. Network Traffic Analysis
	c. Detection Technologies and IDS
	d. Simulated Environments
	e. LLMs in Cybersecurity

	III. RELATED WORK
	IV. PROPOSED FRAMEWORK
	1. First Prompt (Initial Rule Generation): This initial prompt receives anomalous flow details along with essential parameters (e.g., the last rule SID, LLM model, temperature, prompt strategy —zero-shot, few-shot, or chain-of-thought). It generates p...
	2. Second Prompt (Evaluation): The second call re-submits the initial anomalous flows and the generated preliminary rules. Its role is to classify each rule as acceptable, needing further refinement, or discardable. Minor corrections for consistency a...
	3. Third Prompt (Refinement): Rules flagged for refinement undergo detailed packet extraction using Tshark filters based on the rule's attributes, capturing the first 500 bytes of relevant payloads. The rule, its explanation, and the extracted packet ...
	4. Fourth Prompt (Parser-based Correction): Finally, the refined rules are validated using Suricata’s parser in test mode. If syntactic or structural errors arise, the affected rules, along with specific parser error messages, are resubmitted for furt...

	V. EXPERIMENTS AND RESULTS
	Scenario 1: SQL Injection + Modbus PLC Write.
	Scenario 2: Nmap Scan of ICS Network.

	VI. DISCUSSION
	VII. FUTURE LINES
	ACKNOWLEDGMENTS
	BIBLIOGRAPHY

